When the Math Is What’s Exciting

When the Math Is What’s Exciting

I’ve been really lucky to spend time in a grade 1 classroom this spring, as they tackle the final number unit of the year. 1U7 is the culmination of students’ work with addition, subtraction, and place value. Building on the work of the earlier number units, it...
Developing Mathematical Language is Hard Work

Developing Mathematical Language is Hard Work

Using language to effectively communicate one’s mathematical thinking is an important skill—one that is a focus of Math Practice 6: Attend to Precision. Many of us know firsthand that clearly articulating mathematical ideas is challenging work, and that when students...
And Then, She Waited

And Then, She Waited

Have you ever been teaching (or leading professional development) and asked a really good question only to be met with silence? We all have teacher moves in our back pocket for situations like this—maybe do a turn and talk, ask the student if they’d like to call on...
“That Seems Way Too Big”

“That Seems Way Too Big”

On a recent visit to a small district in the Midwest, I got the chance to visit a third grade class that was working on division (3U5, Session 3.4). When I joined Nicole, she was in the middle of working on the following problem: Gil loves toy cars. He saved enough...
What Does It Mean To Be Smart?

What Does It Mean To Be Smart?

“Wow, you’re so smart.” These words drew my attention to a pair of 5th grade girls in a class I was visiting, who I’ll call Cassie and Sophia. They were mid-way through a turn and talk, each sharing her strategy for solving 84 x 59. I casually moved closer, curious...
Using Tools in Art and Math

Using Tools in Art and Math

Recently, I was chatting with a 7-year-old I know pretty well. I asked her about school, and she quickly started telling me about her current math work, complete with eye rolls and boredom. I decided to change the subject a little. “I know you like to tell me about...
“What Was Thomas Thinking?”

“What Was Thomas Thinking?”

I often think about a lesson, captured on video some years ago. Liz, a fifth-grade teacher, gave her students two-digit multiplication problems—12 × 29 and 36 × 17— and asked them to come up with strategies other than the conventional algorithm to perform the...